UG-A-1173	BMS-21X/ BMC-21X

U.G. DEGREE EXAMINATION JULY, 2022.
 Mathematics
 (From CY - 2020 onwards)
 Second Year
 GROUPS AND RINGS

Time : 3 hours Maximum marks : 70

PART A- $(3 \times 3=9$ marks $)$
Answer any THREE questions.

1. Define binary operation * on a set A.
2. Show that in a group, $x^{2}=x$ if and only if $x=e$.
3. State Lagrange's theorem on a group G.
4. Define a commutative ring.
5. Define an Euclidean domain.

PART B - ($3 \times 7=21$ marks $)$
Answer any THREE questions.
6. Show that $f: R-\{3\} \rightarrow R-\{1\} \quad$ given $f(x)=\frac{x-2}{x-3}$ is a bijection and find its inverse.
7. Let H be a non-empty finite subset of G. If H is closed under the operation G then prove that H is subgroup of G.
8. State and prove fundamental theorem of homomorphism.
9. The set R of all matrices of the form $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ where $a, b \in R$ prove R is ring under matrix addition and matrix multiplication.
10. Prove that the ring of Gaussian integers $R=\{a+b i / a, b \in z\}$ is a Euclidean domain where we define $d(a+i b)=a^{2}+b^{2}$.

PART C $-(4 \times 10=40$ marks $)$
Answer any FOUR questions.
11. Define function and explain types of function.
12. Let H be a subgroup of G. Then prove that the number of left coset of H is the same as the number of right coset of H.
13. Let $G=\{1, i,-1,-i\}$ prove that G is group under usual multiplication.
14. State and prove Cayley's theorem.
15. Prove that any finite cyclic group of order n is isomorphic to $\left(z_{n}, \oplus\right)$.
16. Prove that z_{n} is a integral domain if and only if n is prime.
17. Let R is a commutative ring with identity any ideal M of R is maximal if and only if R / M is a field.

U.G. DEGREE EXAMINATION -

JULY, 2022.

Mathematics

(From CY 2020 onwards)

Second Year
STATISTICS AND MECHANICS
Time : 3 hours Maximum marks : 70
PART A - ($3 \times 3=9$ marks)
Answer any THREE questions out of Five questions in 100 words.
All questions carry equal marks.

1. Find the median of the following frequency distribution.
Daily wages in Rs. $\begin{array}{lllllll}5 & 10 & 15 & 20 & 25 & 30\end{array}$
$\begin{array}{llllllll}\text { No. of persons } & & 7 & 12 & 37 & 25 & 22 & 11\end{array}$
2. Find the coefficient of correlation between x and y from the following data :

$$
\begin{aligned}
& n=0, \Sigma x=50, \Sigma y=30, \Sigma x y=-115, \Sigma x^{2}=290 \\
& \Sigma y^{2}=300
\end{aligned}
$$

3. Three coins are tossed. Find the probability of getting at least one head and exactly 2 heads.
4. What are the uses of t-test?
5. Define simple harmonic motion and central orbit.

PART B - $(3 \times 7=21 \mathrm{marks})$
Answer any THREE questions out of Five questions in 200 words.

All questions carry equal marks.
6. Find the quartiles from the following distribution :

Age (years)	Below 20	$20-25$	$25-30$	$30-35$
No. of employees	13	29	46	60
Age (years)	$35-40$	$40-45$	$45-50$	55 and above
No. of employees	112	94	45	21

7. The following table gives the normal weight of a baby during the six months of life.

Age in months $\begin{array}{llllll}0 & 2 & 3 & 5 & 6\end{array}$
$\begin{array}{llllll}\text { Weight in lbs. } & 5 & 7 & 8 & 10 & 12\end{array}$
Estimate the weight of a baby at the age of 4 months using Lagrange's formula.
8. Calculate price index number for 1945 by (a) Bowley's method and (b) Fisher's method.

1935
1945
Commodity Price Quantity Price Quantity (in Rs.) (in Rs.)

A	4	50	10	40
B	3	10	9	2
C	2	5	4	3

9. Apply χ^{2} test to find out if the following table provide evidence of the effectiveness of inoculations.

	Attacked	Not-attacked
Inoculated	83	57
Not inoculated	45	68

10. Derive the Pedal equation or $\mathrm{p}-\mathrm{r}$ equation of a central orbit.

PART C $-(4 \times 10=40$ marks $)$
Answer any FOUR questions out of Seven questions in 500 words.

All questions carry equal marks.
11. Calculate the Person's coefficient of Skewness for the following data.
$\begin{array}{lllll}\text { Class } & 3-7 & 8-12 & 13-17 & 18-22\end{array}$
$\begin{array}{lllll}\text { Frequency } & 2 & 108 & 580 & 175\end{array}$
Class $\quad 23-27 \quad 28-32 \quad 33-37 \quad 38-42$
$\begin{array}{lllll}\text { Frequency } & 80 & 32 & 18 & 5\end{array}$
12. Find the coefficient of correlation between x and y from the following data.

x	10	14	15	28	35	48
y	74	61	50	54	43	26

13. For two variables X and Y the equations of the regression lines are $5 X-Y=22$ and $64 X-45 Y=24$. Find (a) Mean value of X and Y (b) Coefficient of correlation between X and Y. (c) Standard deviation of Y.
14. State and prove Chebychev's inequality.
15. A random sample of 10 boys has the following IQ's : 70, 120, 110, 101, 88, 83, 95, 98, 107, 100. Do these data support the assumption of a population mean IQ of 100 ?
16. There are three main brands of a certain powder. A set of 120 sample value is examined and found to be allocated among four groups (A, B, C and D) and three bands (I, II, III) as shown here under.

Groups

Brands	A	B	C	D
I	0	4	8	15
II	5	8	13	6
III	18	19	11	13

Is there any significant difference in brands preference? Using ANOVA (one-way).
17. Find the resultant of two simple harmonic motions of the same period in the same straight line.

UG-A-1175	BMS-23X

U.G. DEGREE EXAMINATION -

JULY, 2022.
Mathematics
(From CY - 2020 Onwards)
Second Year
CLASSICAL ALGEBRA AND NUMERICAL METHODS

Time : 3 hours Maximum marks : 70

$$
\text { PART A }-(3 \times 3=9 \text { marks })
$$

Answer any THREE questions out of Five questions
All questions carry equal marks.

1. Sum the series
$\frac{3}{1^{2} 2^{2}}+\frac{5}{2^{2} 3^{2}}+\frac{7}{3^{2} 4^{2}}+\cdots+\frac{2 n}{n^{2}(n+1)^{2}}$.
2. Find the quotient and remainder when $2 x^{6}+3 x^{5}-15 x^{2}+2 x-4$ is divided by $x+5$.
3. Solve the linear system $x-4 y=-2 ; 3 x+y=7$ by Gauss-Jordon method.
4. Write the Newton's backward interpolation formula.
5. Using Euler's method find y for $x=0.1$ given $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$.

PART B - $(3 \times 7=21$ marks $)$
Answer any THREE questions out of Five questions
All questions carry equal marks.
6. Find the sum to infinite of the series $1+\frac{3}{4}+\frac{3.5}{4.8}+\frac{3.5 .7}{4 \cdot 8.12}+\cdots$.
7. Solve the equation
$x^{4}+20 x^{3}-143 x^{2}+430 x+462=0$ by removing its second term.
8. Find the negative root of $x^{3}-2 x+5=0$ by Newton-Raphson method correct to 3 decimals.
9. Using Lagrange's interpolation formula find $f(9)$ given that $f(5)=150, f(7)=392, f(11)=1452$, $f(13)=2366, f(17)=5202$.
10. Divide the range into 10 equal parts, find the approximate value of $\int_{0}^{\pi} \sin x d x$ by trapezoidal rule.

$$
\text { PART C }-(4 \times 10=40 \text { marks })
$$

Answer any FOUR questions out of Seven questions
All questions carry equal marks.
11. Sum the series $\sum_{n=1}^{\infty} \frac{n^{2}+3}{n+2} \cdot \frac{x^{n}}{n!}$.
12. Solve the equation
$6 x^{6}-35 x^{5}+56 x^{4}-56 x^{2}+35 x-6=0$.
13. Solve the following equation by Gauss - Seidel method. $\quad x+17 y-2 z=48 ; 30 x-2 y+3 z=75$; $2 x+2 y+18 z=30$.
14. Find the positive root of $x-\cos x=0$ by false position method.
15. Using the following data, find $f^{\prime}(5)$ and $f^{\prime \prime}(6)$.

x	0	2	3	4	7	9
y	4	26	58	112	466	922

16. If $f(0)=0, f(1)=0, f(2)=-12, f(4)=0$, $f(5)=600, f(7)=7308$, find a polynomial that satisfies this data using Newton's divided difference formula. Hence find $f(6)$.
17. Apply fourth order Runge-Kutta method to find an approximate value of y when $x=0.2$ given that $\frac{d y}{d x}=x+y, y(0)=1, h=0.1$.
